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*Highlights (for review)

Research Highlights

e A realistic Multi-Objective Mobile Social Network Search (MO-MSNS) optimization problem
is investigated.

e A decompositional MOEA hybridized with a Meta-Lamarckian approach, coined MOEA/D-
ML, which learns from the problem’s properties and objective functions, is proposed.

e MOEA/D-ML is evaluated on mobility and social behaviour patterns derived from the real
data of Geolife and DBLP datasets and a trace-driven experimental methodology.

e The generalizability of MOEA/D-ML is also evaluated on the well-known multi-objective
combinatorial optimization problem Permutation Flowshop Scheduling Problem.

e The proposed MOEA/D-ML approach successfully learns the behaviour of individual local
search heuristics during the evolution and adaptively follows the pattern of the best
performing heuristics at different areas of the objective space of different benchmark test
instances and for different problems.
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Abstract

Mobile Social Networks (MSNkeave recently brought a revolution in socially-
oriented applications and services for mobile phones. i plaper, we con-
sider the search problem in a MSN that aims at simultaneoualyimizing the
user’'s search outcome (recall) and mobile phone perforemépattery usage).
Because of the conflicting nature of these two objectives,pitoblem is dealt
within the context ofMulti-Objective Optimization (MOO)Our proposed ap-
proach hybridizes a Multi-objective Evolutionary Algdmt based on Decom-
position MOEA/D) with a Meta-Lamarckian (ML) learningtrategy that learns
from the problem’s properties and objective functions. Mie strategy is de-
vised for adaptively select the best performing local deheuiristic for each case,
from a pool of general-purpose heuristics, so as to locgilynuize the solutions
during the evolution. We evaluated our propositions on Asteamulti-objective
MSN search problem using trace-driven experiments withmedility and social
patterns. Extensive experimental studies reveal thatrthypoged method success-
fully learns the behaviour of individual local search hetics during the evolu-
tion, adaptively follows the pattern of the best performiregristics at different
areas of the objective space and offers better performantams of both con-
vergence and diversity than its competitors.

The proposed Meta-Lamarckian based MOEA does not utiligepaoblem-
specific heuristics, as most cases in the literature dolitédimg its applicabil-
ity to other combinatorial MOO problems. To test its geneeddility the pro-
posed method is also evaluated on various test instancles wofdl-studied multi-
objective Permutation Flow Shop Scheduling Problem.

Keywords: multi-objective optimization, evolutionary algorithmecal search,
decomposition, meta-lamarckian learning, smartphomesaknetworks
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1. Introduction

The widespread deployment of mobile smartphone devicesrenddvent of
social networks have brought a revolution in social-oeérapplications and ser-
vices for smartphones [1] and the emergence of the so-dsltdalle Social Net-
works (MSNs)mainly composed of mobile users carrying smartphonesatteat
used for sharing and collaboration [2, 3]. For example, G®bgtitude and Face-
book Places enable users to share their location, rankpéat events, check-in
to favorite places, provide their location history and gufer real-timedata (e.qg.,
content, interests, comments, ideas and places). Curémlbulk of social net-
working services designed for smartphone communitiey, al centralized or
cloud-like architectures. Smartphone clients uploadrtb@ptured objects (e.qg.,
images uploaded to Instagram, video traces uploaded taleuétc.,) to a central
entity that subsequently takes care of the content organizand dissemination.
Smartphones have asymmetric communication mediums witwaup-link, thus
continuously transferring massive amounts of data to araeatthority through
WIiFi/3G/4G connections, can drain smartphone battergfasicrease query re-
sponse times and quickly degrade the network health. A ngajalwhile devel-
oping such a mobile-social network service is often (1) tximé&e the outcome
(i.e., the query response gecall) without (2) deteriorating the resources of the
smartphone devices (i.aninimize energy consumptipgatisfying, at the same
time, several constraints. These two objectives are ctinfli@and the respective
problem is treated within the context Blulti-Objective Optimization(MOOQO)

A Multi-objective Optimization Problem (MOR3, 5] can be mathematically
formulated as

minimize F(X) = (f1(X),..., fr(X)), subjecttoX € Q, (1)

where(2 is the decision space and € (2 is a decision vectorF'(X') consists of

k objective functionsf; : Q — R,i = 1,..., k, whereR* is the objective space.
The objectives often conflict with each other and improvingoe objective may
lead to deterioration of another. Thus, no single solutiiate that can optimize
all objectives simultaneously. In that case, the best trdfisolutions, called the
set of Pareto optimal (or non-dominated) solutions, isrofegjuired by a decision
maker. The Pareto optimality concept is formally defined as

Definition 1. A vectoru = (uy,...,uy) is said to dominate another vector=
(v1,...,vx), denoted as < v, iff Vi € {1,... k}, u; < v; andu # v.

Definition 2. A feasible solutionX™ € 2 of problem (1) is calledPareto optimal
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solution iff 7Y € Q such thatF(Y) < F(X*). The set of all Pareto optimal
solutions is called the Pareto Set (PS), denoted as,

PS={XeQ AY e Q F(Y) < F(X)}.
The image of the PS in the objective space is called the Paretd (PF)
PF ={F(X)|X € PS}.

Multi-objective Evolutionary Algorithms (MOEAsan obtain an approximate
PF in a single run by accommodating different forms of omegato iteratively
generate a population of such solutions. A major goal of MGEAen dealing
with a MOP is to produce (i) a diverse set of non-dominatedtgmis that is (ii) as
close as possible to the real PF. Several techniques wepesed for improving
the performance of MOEAs along those directions. For examdOEAs are
combined with niching mechanisms such as crowding distastimation [6] to
improve diversity, and/or local search methods [7] to inweroonvergence. The
hybridization of MOEAs with local search heuristics, alsoolvn as Memetic
Algorithms (MASs) [8], has been proven efficient in the pasvirg rise to new
challenges such as how to select the appropriate localls@aethod within a
pool of local search methods in order to identify, in an effecmanner, the best
local solution within a neighbourhood.

In Single Objective Optimization (SOO0), an Evolutionarygatithm (EA) is
often hybridized with a Local Search (LS) method either manty or determin-
istically. In the former case, either a LS method is randoselyected a priori and
used for the whole evolution or a LS method is randomly setéitom a pool of
LS methods at each generation. In the latter case, probpetifc LS methods
are designed and deterministically combined with an EA thasethe character-
istics of the objective function. However, the choice of tmrect LS method
and/or the design of a problem-specific LS method for eadfjiesiobjective that
needs to be optimized can be a difficult and tedious procdssIfas is mainly
due to the fact that different search algorithms, other thdform random search,
might introduce some kind of different bias into its searcattmakes a method
good for some classes of problems but not for others. Ong aaaéin [10] pro-
pose a Meta-Lamarckian learning (or adaptive search)egtyahat intelligently
selects the most suitable LS method from a pool of LSs duhagtolution.

In MOO, however, things are even more complicated for thieofohg rea-
sons: (i) in most cases there is no (or limited) knowledgéefgroblem domain
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and MOEAs are often used as a black box [11], and (ii) in addito the is-
sues that are commonly considered when selecting a LS for @Q@Q different
LSs having different bias on different classes of problemwall as on different
instances of the same problem domain), in MOO, due to theiplilbften con-
flicting objectives involved, there are also different leigs®n the same instance of
the same problem domain but for different objectives.

In this paper, we combinkleta-Lamarckian (ML) learningvith MOEA to
study a realistic combinatorial Multi-objective Optimizan Mobile Social Net-
work Search MO-MSNS$ problem initially defined in [12]. We propose a new
algorithm named MOEA/D-ML, which follows the general frawark of MOEA
based on Decomposition (MOEA/D) [13], combined with a pobgeneralized
Local Search (LS) methods and a Meta-Lamarckian Learniregesty to adap-
tively learn the effectiveness of each LS, and select thé er$orming LS for
each objective function of each problem instance of eacssadh problems, on-
line during the evolution. Here it is important to noticettha problem-specific
heuristics are used in the design of the proposed approactgnitrast to other
research studies that incorporate Meta-Lamarckian legistrategies (e.g., [14]),
so as to facilitate its generalizability to other multi-ebjive combinatorial op-
timization problems. MOEA/D-ML is first evaluated using nildlp and social
behaviour patterns derived from the real data of GeoLifd Hd DBLP [16]
datasets and a trace-driven experimental methodology. titein also applied to
various benchmark test instances of the well-known mudjective Permutation
Flow Shop Scheduling Problem (PFSSP) [7, 14, 17].

The rest of the paper is organized as follows: Section 2 des/ielated work
on Mobile Social Networks, Multi-Objective Optimizatiomé MOEAs, as well
as Meta-Lamarckian learning and adaptive search. Sectiom@®luces the sys-
tem model as well as the problem definition and formulatioect®n 4 presents
our MOEA/D-ML approach, its internal structures and prages. MOEA/D-
ML is evaluated in Section 5 on realistic scenarios (by cammlg real datasets)
and experimental parameters on the proposed MO-MSNS pmolaie well as on
various instances of the PFSSP. Finally, Section 6 consltids paper.

2. Related Work

In this section, we provide related research work that lidatfoundation of
our propositions.
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2.1. Mobile Social Networks

Searching a smartphone social network to share objectsesest (e.g., pho-
tos, videos, text etc.,) can be roughly classified intoB(iad Search [18, 19, 20],
where smartphone users propagate the query using an ussogied (e.g., ran-
dom, TTL property) approach to as many nodes in the netwopoasible, and
(i) InformedSearch [21, 22], where smartphone users utilize semaniication
information to forward queries to specific nodes in the nekwo

In this paper, we adopt the search approach presented intfi#]belongs
class (ii) with the difference that a centralized approachtilized where smart-
phone devices subscribe to a centralized registry. Sirnl§2?2], a content sum-
mary mechanism (i.e., profile) is used for discovering mohb#ers that will par-
ticipate in a queny@ by the centralized node. In our adopted setting, the content
summary of each mobile user is stored at the centralized moaoie its registration
and it features continuous sharing of data that can be edilia create a number
of collaborative scenarios (e.g., BikeNet [23]).

A central component to realize such scenarios is the aviyadf some high-
level communication structure, such @siery Routing Trees (QRTs)n [24],
the authors present a technique that profiles the actiwofi¢ise user in order to
minimize the number of communication packets transmittethe smartphone
network. In [25], the authors form QRTs using flooding in arttecontinuously
track mobile events and relay data to the query user. Howdvisr approach
suffers from significant energy waste as all nodes contislycand actively par-
ticipate in the smartphone network.

Moreover, trying to optimize only a single objective (e.ginimize energy)
individually by ignoring and/or constraining the othersg(e minimize network
resources consumption, maximize recall etc.), often tesullosing “better” so-
lutions, since in a smartphone social network, minimizing €énergy and maxi-
mizing the recall (i.e., quantity and quality of relatedextip of interest retrieved)
are conflicting objectives and a set of trade-off candidatet®ns is required.

2.2. Multi-Objective Evolutionary Algorithms

Multi-Objective Evolutionary Algorithms (MOEAS) are prem efficient and
effective in dealing with MOPs. This is due to their popwatibased nature that
allows them to approximate the whole PS (PF) in a single ru@B¥s general
frameworks are often classified into three main catego(igthe MOEAs based
on Pareto Dominance [4] such as MOGA [26], NSGA-II [6], SPEA27], which
are mainly characterized by a selection operator based mid”domination and
a reproduction operator used iteratively; (ii) the decosifpanal MOEAs [28]

5

Page 6 of 56



such as MOEA/D [13], MOGLS [29, 30], which are based on cotiesal aggre-
gation approaches and usually decompose a MOP into a nurhbealar SOO
sub-problems, which are weighted aggregations of the icidal objectives; and
(i) the indicator-based MOEASs such as the Basic Indic&ased Evolutionary
Algorithm (B-IBEA) and the Adaptive IBEA (A-IBEA) [31, 32)which allow to
adapt the search according to arbitrary performance messkor recent surveys
on the state of the art of MOEAS please refer to [33, 34].

The combination of a MOEA with.ocal Search (LS)s known asHybrid
(Memetic) MOEAs The first hybrid MOEA was implemented by Ishibuchi et
al. [29] as a Multi-Objective Genetic Local Search (MOGL§$peoach, in which
the multiple objectives were aggregated into a scalar stfigsction using ran-
dom weights for parent selection and LS. Jaszkiewicz [38]fbheher improved
MOGLS performance by improving the parent selection. ralhg this direction,
several researchers have designed hybrid MOEAs by applh@nip all individ-
uals [35] either at the end of each generation [29, 30], drgushe last genera-
tion [36]. In particular, the general MOEA/D framework paged by Zhang and
Li in [13] considers the hybridization of MOEA/D with LS as aptional step.

Even though there is a variety of hybrid MOEAs available ia titerature,
their applications on Multi-Objective Mobile Social NetrdSearch optimization
problems are still rare. For example, Liu et al. in [37] and &taal. in [38]
focus on topology-related MOPs utilizing MOEAs for optinmg the commu-
nity structure of social networks without considering asgmrelated objectives
such as user satisfaction or the performance of users’ pharé devices. Our
work is more related to the work in [12] in which the authorsédnapplied the
conventional MOEA/D on a tri-objective search optimizatfroblem in a social
community of smartphone users providing better resultas tha state-of-the-art
Pareto-dominance based approach NSGA-II. Their major aamthe design of a
principled framework composed of an optimizer (MOEA/D),asterior decision
maker and a Peer-to-Peer search approach. A real prototyigerswas developed
for the ubiquitous Android Operating System and was utilizereal conditions.

The work presented in this paper focuses on the algorithggeets of solving
a real-life bi-objective MSN search optimization problendan general, on the
application of adaptive learning strategies on a hybridodgmositional MOEA
for addressing multi-objective combinatorial optimipatiproblems. We propose
MOEA/D-ML, a hybrid MOEA/D combined with Meta-Lamarckiaedrning to
adaptively select the most appropriate LS method from a pbgéneralized LS
heuristics. To the best of our knowledge, there is no sintidoridization of a
decompositional MOEA and Meta-Lamarckian learning in ttexature.

6
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2.3. Meta-Lamarckian Learning and Adaptive Search

Even though the hybridization of EAs with LS methods, indialistically
and/or randomly, is easy and is proven efficient to achievk ood exploration
and exploitation simultaneously, it still raises sevesalies. From a SOO point
of view, Reeves has observed in [39] that different LS opesgprovide different
number of local optima and induce considerably differentikcapes [40]. Fur-
thermore, Davis [9] has effectually argued that hybridizt@As with the most
successful LS method for a particular problem should workvocse than either
GA or LS alone. On the other hand, if one does not know which leshod best
suits a problem in hand, there is a great chance for the higéxit perform worse
than GA alone. The major impact of LS methods on the perfoomah MAs can
be found in [41, 42].

Moreover in [10], Ong and Keane further expand the aforeroemstatements
by arguing that with so many LS methods available in thedine, it is almost
impossible to know which is the most relevant to the problespecially in the
absence of any knowledge on its cost surface a priori. Theyngim propose an
adaptive search approach, coined Meta-Lamarckian legaiih, which injects
some intelligent means on the correct selection of a LS agbrérom a pool of
LSs for a particular problem while the search is progressing

Meta-Lamarckian (or adaptive) strategies can be charaetkias coopera-
tive and/or competitive or individualistic. Competitiomwhen LS methods with
higher fithess improvements are rewarded with higher chtmbe selected for
subsequent optimizations. Cooperation is when LSs and ith@rovement re-
wards act together for the selection of a LS for a subsequaimhization, and
individualistic is when a single LS is used on the problem. ofnemon reward
measure; of the improvements contributed by a LS to a solution that thesen
searched is defined in [10] as

n= 5M7 )
L

wherepf is the initial function fitness of a parent solutfobefore local search,
cf is the final function fitness of the child solution after apptylocal search and
1 is the number of LS function evaluation calls made to reaomfpf to cf.

The term|pf — cf|/p is the absolute reward measure ghslignifies the relative

lin EAs terminology a solution, a chromosome and a decisiartovelerms are used inter-
changeably
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reward that scales the absolute reward in proportion toltiiyato produce high

guality solutions compared to the best known solution olatéiso far during the
evolution. Oftens is set ass/cf for minimization andcf /o for maximization

problems, where is the fitness of the best solution encountered so far.

The approach of Ong and Keane in [10], cannot be directly us®dtDO and
cannot be combined with a MOEA based on Pareto dominance.rédsen is
that MOEAs based on Pareto dominance tackle a MOP as a whdléhanm-
provement towards the direction of one objective oftenltesni the deterioration
of others. The MOEA/D approach, on the other hand, allesitis difficulty by
decomposing the MOP into a set of SOO subproblems, whichaved using
SOO techniques and neighbourhood information. To do tlzeth) sub-problem
is usually associated with a weight vector, which can be @sed measure of
its solution’s objective preference and its position in tgective space. Meta-
Lamarckian learning can therefore be used to learn theteffegach LS during
the evolution and choose the most appropriate LS to locgtinoze a solution
along the direction of the preferred objective of each soblam.

The authors in [43] tackled a continuous MOP by using a nobjective
evolutionary algorithm hybridized with a Lamarckian leiagn strategy, coined
Multi-Objective Lamarckian Immune Algorithm (MLIA) for ifproving the Non-
dominated Neighbor Immune Algorithm (NNIA). The Lamarakiearning per-
forms a greedy search so as to generate improved decisitorsyezound non-
dominated individuals in less crowded regions of the curRareto Front (PF).
The Powell’s conjugate direction method is then adoptetbically searching the
continuous objective space of the considered MOPs. Hesdntportant to note
that although the focus of this study is on discrete MOPsptbposed approach
could also be applied on continuous MOPs [44], such as thielwelvn ZDT and
DLZT, by adopting a pool of LS heuristics suitable for seargha continuous
objective space. This, however, is out of the scope of thiepa

A hybrid Multi-Objective Particle Swarm Optimization (M@®) with Simu-
lated Annealing is proposed in [14] for tackling a multi-ebfive permutation flow
shop scheduling problem. A ranked-order value (ROV) rulgebleon a random
key technique is employed to convert the continuous pasitadues of particles
to job permutations. A problem-specific LS based on the NEHFHistic is first
applied to good solutions with a specified probability = 0.1 to enhance the
exploitation ability. To enrich the searching behavior &mdvoid premature con-
vergence, a LS based on Simulated Annealing, with multigferént possible
neighborhoods (SWAP, INSERT, and INVERSE) is then appliétl & specified
probabilityps4, = 0.05. An adaptive Meta-Lamarckian learning strategy is em-

8
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ployed in order to decide which neighborhood will be usethd@ame. MOPSO is
evaluated on various instances of the permutation flow shbeduling problem
and compares favourably against MOGLS [7, 30].

We remark that the main differences between our researck avat the work
in [14] are: (i) for the construction of the MOPSO, problepesific knowledge is
considered that may affect its generalizability in othettimabjective combinato-
rial optimization problems; (ii) the actual effect of the tdd_amarckian learning
strategy is not shown in any of their experimental serieg.(eomparison of the
proposed algorithm with and without Meta-Lamarckian |&agrand/or replacing
the ML strategy with random selection strategy) and (iiiy decompositional-
based MOEA is able to adaptively learn the effectivenessaohd.S and select
the best performing LS at different areas of the objectiaespduring the evolu-
tion.

3. Problem Definition

In this section, we outline the adopted system model frothdhd then formu-
late the MO-MSNS problem. A table of respective symbols @ghin Table 1.

3.1. System Model

Overview

Let C, denote a social networking service that maintains cdntaalist of its
M subscribed usei®d and their corresponding profilé3 that record basic user
details, authentication credentials, interests anddséip relations which can be
used to define the conceptual social network gr@@mong theV/ users. In our
setting, a user, uses a smartphone device to capture objegtf interest at
arbitrary moments.

Energy and Data Rate Model

We assume that wher) is connected t@, thenC is aware ofu;'s absolute and
relative location. Each; features different Internet connection modalities that
provide intermittent connectivity t6 (e.g., WiFi, 2G/3G/4G), as well as peer-to-
peer connection modalities that provide connectivity tdesin spatial proximity
(e.g., Bluetooth, Portable WiFi or NFC) [45]. Note that, leat the connection
modalities comes at different energy and data transferataéeacteristics. For
example, uploading or downloading large data items usingtbth can be more
energy-efficient than using a radio network, but Bluetootymot always be
available and itis often slower. For more details, pleafa te Section 2.1in[12].
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Social Network Search Techniques

Let an arbitrary uset;, be interested in answering a quég) over its social
neighbourhood;’ (i.e., nodes ing connected ta; either directly or through in-
termediate nodes). For instance, &te a depth-bounded Breadth First Search
qguery overu;’s neighbours in the grapi’ C G. This kind of conceptual query
can be realized either in (i) central, or (ii) distributedmar.

In (i), the multimedia objects,, and tags are all uploadedoprior to query
execution. Onc& is posted can locally derive the answers (using its local tag
database) and return the answers;tol his model, currently utilized by all social
networking sites (such as Twitter, Youtube, etc.), perfomell in terms of query
response time but performs poorly both in terms of data dssok (i.e., objects
oqr, @and tags need to be continuously disclosed)tand performance (i.e., data
transmission of large objects over radio links is both epelgmanding and time
consuming.)

In (i), the objects and tags are all stored in-situ (on tbainer’'s smartphone).
In order to realize the search task, a querying neddownloads fromC the
addresses (e.g., IP:PORT address) of its first line neigfiogpuodes ing’. User
u; then contacts these nodes in order to conduct a depth-bduBréadth First-
Search in a P2P fashion (i.e., using a pre-specified Querg-TioaLive Q1 >
0). Once some arbitrary nodg € G’ receivesQ, it both looks at its local tags, in
order to identify an answer and also forwards the requestduuntil Q1 = 0.
The distributed approach improves the data-disclosure/tthek of the central
approach, but it is quite inefficient during search beca@skas to go over a
random neighbourhood rather than a neighbourhood thahiextwally related to
the query.

The search method adopted in this paper, aims at utiliziagattvantages of
both search approaches (i) and (ii) outlined above. Theimettia objects are
kept in-situ for preserving privacy and facilitate locatiawareness and the users
only upload their profiles t@, which will be responsible to derive and forward to
the query uset;, a Query Routing Tre& with the addresses of the contextually
related users of the network along with the connection mtydtidat each user
should be contacted. Then the query user will conduct a depiimded Breadth
First-Search in a P2P fashion to retrieve the data.

2Without loss of generality we assume simple Boolean keywoieties over tags.

10
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Table 1: Table of Symbols

| Symbol | Description

C Centralized Social Networking Service

U Users{u, us, ..., ups } of the Social Mobile Network

P Profiles{p1, p2, ..., pas } Of users i/ stored byC.

Oak Objectk (images, videos, etc.) recorded by user

g Conceptual Social Network Graph connecting usets.in
g Social neighbourhood of some arbitrary usgr € G).

Q Query conducted ig’'.

X Query Routing Tree (solution or individual) constructed
to answer querg (X C G).

U’ Active users (nodes @’) connected t@ during execution of.

3.2. Problem Formulation

TheMulti-Objective Mobile Social Network Sear@O-MSNS) problem fo-
cuses on improving the search operation of a smartphonebysgstimizing the
neighbour selection process. More precisely, given q@e iy node aims to down-
load fromC an optimizedQuery Routing Tree (QRTY, which minimizes the to-
tal Energy consumption and maximizes the Recall rate, daugto the following
formulation:
Given a social network of users, a queapyposted by an arbitrary user, a list of
active userg/(’, their coordinates and their profil@s define:

e The totalEnergy consumption ofX

Energy(X) =) e(ua,m), 3

(uavub)ex

wheree(u,,u;) denotes the energy consumption for transmitting one byte
of data over the respective edge (WiFi, Bluetooth and 3G)jgigie energy
profiling of the devices according to the energy model.

e Recallrate of X

_ Relevant(Q) N Retrieved(X, Q)
Recall(X, Q) = Relevant(Q) )

11
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where

RelevantQ) = | J J ou,

ug €U’ k
denotes the set of all objeais, from active users,, that are relevant t@,
that is, the profiley, of useru, contains terms found i@ and

Retrieved{, Q) = U U Oaks

ug€X k

denotes the actual set of objeetg from active users:, that have been
retrieved in response 1@ over X, andp, contains terms found i@.

The query processor then aims to:
minimize F(X) = (fi(X), f2(X)), subjecttoX C G, (5)
with objective functions
f1 = Energy(X), fa = —Recall(X, Q), (6)

defined above in Equations 3 and 4, respectively.

4. Proposed Approach

This section details the proposed MOEA/D with Meta-Lam&oK_earning
approach, named MOEA/D-ML.

4.1. MOEA/D framework

The MOEA/D-ML builds upon the decompositional generic MOBArame-
work proposed by Zhang and Li in [13], which requires thedaiding pre-processing
steps:

Decomposition: Initially, the MO-MSNS is decomposed into a number of scalar
subproblems using the Tchebycheff approach with a set ddumiy distributed
weight vectors as follows. Given the objective vecitX) = (f1(X), fo(X)),

a weight vector\!, which remains fixed for each subproblem for the whole evo-
lution [46] and a reference point = (z1, z2), which is a vector with all the best
valuesz;, found so far for each objectivg, the objective function of a subproblem

1 1S stated as:

g(X X', 2") Z{A | fe(X) = 2} (7)
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Assuming that there ar& weight vectors\!, ..., A" then the original MOP is
decomposed td/ scalar subproblems.

Representation: Each scalar subproblem with an objective functi¢i |\’ 2*),

1 =1,..., N has a representative solutighthat is the best solution found so far
for that particular subproblem during the evolution. Thedell representative
solutions at each generation is called the Internal Poipuléf P), where thel P

is equal to]/P| = N. In MO-MSNS problem, a solutionX is a QRT of fixed-
size|d’|, i.e., the active smartphone users that can participateeinesolution of
Q. Therefore without loss of generality, |&t be a fixed-size vector in which each
indexa corresponds to a usar, and the value of that index correspondsutés
parent. The root of the tree is the query user (for simpliedted as:;). A nega-
tive value—1 in any position indicates that the given user is not curyeselected
in the query routing tre&.

Subpopulations/Neighbourhoods:Moreover, N subpopulations (or neighbour-
hoods) are generated for each subproblem. The neighbalifoof a subprob-
lem associated with a weight vectat is composed of the indexes of the sub-
problems whose associated weight vectors arélthe< N closest (in terms of
Euclidean distance) t&’ including itself. This is due to the argument of Zhang
and Li in [13] that the optimal solutions of th& and ;" subproblems are close
to each other in the search space iff txieand )\’ are close to each other in the
weight space. Therefore, the genetic information ofitheubproblem should be
helpful for solving thej’* subproblem and vice-versa.

At each generatiogen, the populatiory P is evolved by generating a new solu-
tion for each subproblem. For th& subproblem withy(X |\, 2*) a new solution

Y, known as offspring, is generated using the genetic opexrgi@., crossover
and/or mutation). Then a solutiofi is generated by locally optimizing solu-
tion Y using a local search heuristic. The local search heuristadaptively
selected from a pool of local search heuristics of dizasing a reward vector
R' = (ry,...,rr), assigned to each subprobleénwhich is constructed and up-
dated at each generation by a Meta-Lamarckian (ML) learapgyoach. Finally,
solution Z is used for the following updates. () is selected as the new rep-
resentative of the’” subproblem and therefore replaces the current best solutio

3The termg'solution” , “individual” , “vector” and“QRT” are used interchangeably.
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X, iff g(Z|N\2*) < g(X|A\E 2*)% (2) For eacty = 1,...,n, update the ref-
erence point, ifz; < f;(Z) then setz; = f;(Z). (3) Update the set of non-
dominated solutions (i.e., Pareto Front - PF) found so fainduthe evolution as
follows, PF = PF U{Z} if Z is not dominated by any solutioki € PF, and
PF = PF\{X}if Z < X, forall X € PF. (4) Update the neighbourhodsgl
of thei'" subproblem: the new solutior of thei* subproblem is compared with
all representative solutions in the neighbourhoo®® = {i;, ..., ir}. Z updates
X iff g(ZIN,2*) < g(X|N,2*), forall j € {iy,...,ir}. The same process is
followed for all N subproblems. The evolution stops after a terminationraoite
is satisfied, such as a maximum number of generatjen¥' is reached, or the
PF has not converged after a fixed number of consecutive gemesgtn©.

4.2. MOEA/D-ML main steps
The detailed steps alOEA/D-ML are presented below:

Input:
pu. a MO-MSNS problem instance (see Subsection 3.2);
e a termination criteriongen™);
o the number of decomposed subproble¥hand thus weight vectoks\!, . .., AN},
e the pool of local search heuristics of size
e the size of the neighbourhoddof each subproblem.

Output: a set of non-dominated solutioid.

Step 1: Initialization

1.1 SetPF =)

1.2 Decompose the MO-MSNS problem imtoscalar subproblems;

1.3 Initialize /P = {X!,..., X"} corresponding to subproblem with weight
vectors\!, ..., \V respectively, and evaluate it using Eq. (7);

1.4 Compute the Euclidean distance between each pair ofdlghtwectors to
construct the neighbourhodd = {i;,...,ir} for each subproblem so
that)\i, ..., \;. are theT closest weight vectors t¥ (including \’ itself);

49(Z|\E, 2*) > g(X |\, z*) for maximization subproblems
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1.5 SetR' = (ri,...,rt) =0,wherei =1,..., N;
Step 2: Main Loop
2.1 Setgen = 1;

2.2 Genetic Operation: For thei’* subproblem generate a new solutidhus-
ing conventional genetic operators (i.e., Selection, &vesr and Mutation
as in [13]). In particular, two parent solutions are randps#lected from
the neighbourhood’ of thei** subproblem. The two parent solutions are
recombined using a two-point crossover to produce a newtisoluthe off-
spring - with a probability-.. The offspring is then modified with a random
mutation operator with a probability,,. Finally, evaluate the new solution
Y using Eq. (7).

2.3 Meta-Lamarckian Learning: Then select a local search heuristic from the
pool of local search heuristics using a Meta-Lamarckiamieg approach
and the reward vectadk’. Apply the selected local searcho to generate
Z" and evaluate it using Eq. (7). Calculate the rewaraf the selected
local search heuristi¢ € {1,..., L} using a reward function that measures
the improvement contributed hyto generateZ* with respect taX* andY™.
Update the reward vectdt’ = (ry,...,rz), accordingly.

Step 3: Update: Use solutionZ® to updatez*, IP, PF andB¢. If i < N then
1 =1+ 1 and goto Step 2.2;

Step 4: Termination: If the termination criterioryen = gen™ is satisfied then
terminate the algorithm and output tie", otherwise goto Step 2.1;

4.3. Definition of Reward Function

During the Meta-Lamarckian learning in Step 2.@ward (ranging from 0 to
1) is calculated to measure the improvement contributedbyead search heuristic
when applied toY” to generate a new solutiod, recalling that solutionX is
the best solution found so far during the evolution for sebpgm:, using the
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following rules:

(1 (@) ifg(Z) <g(X)<g(Y)
) S4=2% (b)) ifg(2) < g(Y) < g(X) .
I () ifg(X) <g(Z) <g(Y)
(0 (d) otherwise

whereg(X), g(Y) andg(Z) correspond tg (X |\’, zx), g(Y |\, z*) andg(Z| X\, zx),
respectively. The proposed reward function and rules tafiebe actual contribu-
tion of the local search approach in the scalar objectivetfan space by taking
into consideration the actual replacementy6f) towards the optimal solution
with respect tgy(X) andg(Y") as follows:

¢ Rule (a) rewards the local search heuristic with the maximuossible value
(i.e., 1), since it generates a solutignthat is better than the current best
solution X even if the genetic operation generated a poorest offspfing
thanX.

¢ Rule (b) rewards the local search heuristic with a possildgenate value,
since it generates a solutighthat is the same or better than the current best
X but the improvement builds upon the already improved soiti that is
generated by the genetic operation.

¢ Rule (c) rewards the local search heuristic with a possildgenate value,
as it generates a solutidhthat is better thai’, but at most as good as.

¢ In Rule (d) the local search has not been rewarded since noiuament is
observed. Note that(Z| )\, zx) = g(Y|\, z*) in the worst case.

4.4. Pool of general Local Search (LS) heuristics

In order to maintain the robustness and generalizabilityusfproposition as
well as to promote the adaptiveness and contribution of@aming strategy that
follows, we decided to use six general local search heosisthich have been
frequently used on permutation or sequencing problemsifdtfie past:

e Swap Heuristic (Sw): randomly selects and swaps the parent nodes of two
users{u;, u;} € Y.
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Double Swap(DSw): performs the random swap heuristic twice.

Copy Heuristic (CH): randomly selects the parent node of a useand
copies it to another user;.

Shift Heuristic (Sh): randomly chooses to perform either a backward shift
or a forward shift. A backward shift randomly selects a panenle from its
current position of user; and inserts it at a position before a usgrwhere

1 > j. A forward shift is similar to backward shift, but it sele@gparent
node from its current position of usef and inserts it at a position after a
customen;, wherei < j.

Double Shift (DSh): is the combination of Backward and Forward Shift.

Inverse (IH): is the selection of a portion df? and reversing its order.

In all cases, the local search approaches are used gre€day.is, the local

search starts from solutiori® and continues for a pre-defined numbeof iter-
ations. Each time an improvement is achieved and an impregkdion 7 is
obtained, the search continues from the improved solufiofor the remaining
moves, otherwise the search continues from the origifiadolution. Note that
moves that lead to infeasibility such as disconnecting ithe or forming cycles
are not allowed during local search.

In [47], Reeves has mentioned some interesting relatipsstm local search

operators for SOO. For example, one can say that Swap is takesefrom all
these operators and an optimal solution with respect to #rsr @perator is also
optimal for Swap heuristic. In that sense, Swap is subsumead bther operators
in the pool of local search approaches. Similarly, Forward Backward Shifts
are subsumed by Double Shift, which should theoreticaltylpce better solutions
given that its search space is twice as large. One can saththas also true for
the Inverse heuristic, in which the Copy heuristic is subsdnHowever, in this
article the type of questions that are considered intergstnd challenging for
investigation are: (i) whether one operator of the same®igperforms another
in all test instances and all objectives; considering tioetfzat different operators
induce different landscapes and that the combination sitbperators in different
times of the evolution may perform better and faster; (iigttter there is a bias of
different operators in different areas of the objectivecgpdor dissimilar classes
of MO-MSNS instances and if this bias can be learned duriegtiolution.

17

Page 18 of 56



Greedy-Neighborhood (GN) Heuristic ~ Stochastic Roulette-wheel (SR) (c) e-Greedy Heuristic

Find the T closest neighbors in the weight Initially all LSs have equal probability to be Uniformly  randomly  generate a
space. Then find the average reward value of selected. Then, sum up the reward value of random number rand between 0 and
each LS in the neighborhood. Sort LSs based each LS, normalize it and assign space on the 1. If rand < e then select LS based
on the average reward and select the LS with roulette wheel based on the normalized reward. on Roulette wheel, otherwise based on
the highest value. m Spin the roulette and select the LS. Greedy-Neighborhood heuristic.

LS, Generate

Ls, rand
LS,
LSe
LS5

Figure 1: The adaptive search heuristics.

2
Neighborhood in weight space

4.5. Proposed Learning Strategy

The idea behind the adaptive strategy for Meta-Lamarclkeanning in the
proposed decompositional MOEA aims at providing insigbtshibse questions
by learning the effectiveness of each local search heaniistdealing with the
current objectives, problem instances and problem ardaeaseiarch progresses.

At the beginning of the evolution and for a predefined numlbgenerations
¢' each single local search heuristic is given the opportunityybridize with the
MOEA for locally optimizing the solutiorY’* of each subproblem The reward
of each local search is calculated using Equation 8. Thaselireward values
will be used later to guide future LS choices and will changeasnically as the
overall search progresses. This is commonly known as tl@rtgastage, after
which the learning phase takes over, using the propeggdedy strategy, which
probabilistically alternates between the following twaneing strategies.

The Greedy Neighbourhood-basedGN) strategy works as follows:
Step 1: Locate the neighbourhoa’ of sizeT" of a subproblen.

Step 2: Find the average reward valig = (71, . ..,77) in the neighbour-
hood B".

Step 3: Select local searchwith the maximum average reward valtie

For each parent solutioX in the population to be searched, the GN strategy
locates itsI” closest neighbours from the archived database by usingesiEnp
clidean measures. Note that each neighbour solifiesmassociated with a pool
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of LS strategies and their current rewards achieved so faenThe average re-
ward of each LS from the pool of LS approaches is measuredall§irthe LS
with the highest average reward in the neighbourhood is tesedprove the par-
ent solutionX . After LS, theX and the reward of the selected LS are updated
the database.

The Stochastic Roulette-whee(SR) strategy works as follows:

Step 1: Sum the reward values € R’ of all local search approaches for

subproblem:.
Step 2: Determine normalized relative reward value of each membé&¥ o

Step 3: Assign space on the roulette wheel for each local searchdlzase
the normalized value.

in

Step 4: Generate a random number between 0 and 1, select the looah sea

corresponding to the portion of the wheel in which the chaaedom num-
ber falls.

The SR strategy ensures that the probability that a LS appraselected is
biased from its own previous performance, which changesmhcally as the
overall search progresses. In particular, each time a paotution X is about to
be locally searched, a biased roulette wheel is used to pi¢ckeisubsequent LS,
based on the rewards taken and archived over all previousTliteshighesta LS’s

reward for particularX, the highest the probability to be selected for future local

searches. This strategy, ensures diversity in the choit&@pproaches since it
restricts a LS from completely dominating the search.

Finally, the proposed-greedy strategy, which is based on a pre-defirieet

e < 1 parameter, generates a random numiaerd between 0 and 1 and selects

the Stochastic Roulette-wheel strategydfid < e or the Greedy Neighbourhood-
based strategy otherwise. Each time a local search approacadaptively se-
lected and used oF" to generate a solutio#’, the reward value of; € R’ is
updated using Equation 8.

The e-greedy strategy promotes both cooperation and competitlo pro-
motes competition by giving the opportunity of a LS that peris better along
the direction of one objective and within a particular néighrhood of a par-
ticular problem and/or a particular instance of the prohleabe rewarded with
greater chances of being selected for subsequent optiorizatiuring the evo-
lution. It promotes cooperation by allowing the solutiorisobproblems to ex-
change neighbourhood information, not only about the ggreand fitness of
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the individuals as in the conventional MOEA/D, but also dhibie performance
of each LS on a particular subproblérand its neighbourhoog".

5. Experimental Studies

In this section, we introduce the experimental setup fodldwn our experi-
mental studies. First we discuss the real data sets util@zddsign our synthetic
data sets and test instances on the MO-MSNS problem. We twarible the
various methods that are compared with our proposed MOBALDand their
parameter settings, as well as, the performance metrikzedtito evaluate the
algorithms’ performance. In order to evaluate the efficatynoorporating the
Meta-Lamarckian (ML) learning approach in MOEA/D sevenexmental series
are developed. We then compare the proposed approach wiltate-of-the-art
in MOEAs based on Pareto-Dominance, the Non-dominatedn§d&enetic Al-
gorithm 11 (NSGA-II) [6]. Finally, we test the generalizaity of the proposed
method on eight test instances of the well-known Multi-@bje Permutation
Flow Shop Scheduling Problem (PFSSP). We introduce thngerarental series
in order to compare its performance against the Multi-ObjedGenetic Local
Search (MOGLS) approach and other MOEA/D variants. Stedilsand sensitiv-
ity analyses are also provided in order to support the etialugesults.

5.1. Experimental Setup for MO-MSNS

In our experimental studies, we examined a mobile socialazte that is de-
rived from the following two real datasets as in [12]:

Geolife[15] (mobility): This real dataset by Microsoft Research Asia includes
1,100 trajectories of a human moving in the city of Beijingeoa life span of two
years (2007-2009). The average length of each trajectdagpisi 10 points, while

the maximum trajectory length is 699,600 points. Noticé 86 of the GeolLife
dataset refers to a granularity of 1 sample every 2-5 secomelgery 5-10 meters.

DBLP[16] (social): This real dataset by the DBLP Computer Science Bibliogra-
phy website, includes over 1.4 million publications in XMariat. In particular,
the dataset records the paper titles, paper urls, co-ajthioks between papers
and authors and other useful semantics. In order to map atésekt to our prob-
lem, we assume that each object is an author’s paper. We sdsona that each
object is “tagged” by the keywords found in the paper title.

In order to link the above datasets we have constructed alensdiial scenario
that uses the DBLP social dataset and GeoLife mobility @ataghe DBLP
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dataset is used to construct a social grgpdf authors that are related based on
their research interests (i.e., keywords of their artididles) as well as their co-
authorships that are attributes of the DBLP dataset. Thehave mapped each
DBLP author to a trajectory of the Geolife dataset. That is,have extracted
1,100 authors from the DBLP dataset and we have mapped th#ra 19100 tra-
jectories of the Geolife dataset using a 1-1 correspondefités resulted in a
social graph with 1,100 mobile DBLP authors moving in thg oit Beijing.

In our experiments, we utilize the following two queries:

-- Query 1

SELECT S.title, S. url

FROM Smart phoneUsers S, Query Q

WHERE (distance(S.x,S.y,Qx,Qy) < 10 KM
AND S. Title LIKE " Yoptim zati on% ;

-- Query 2

SELECT S.title, S.url

FROM Snart phoneUsers S, Query Q

WHERE (distance(S.x,S.y,Qx,Qy) < 10 KM
AND S. Title LIKE ' %dat a% ;

where “S.x,S.y” represent the: (y) coordinates of a Smartphone userdrand
“Q.x,Q.y” represent thea(, ) coordinates of the query user. The query search
will be conducted within an area of radiug KM.

Table 2: Experimental Execution Scenarios and Test Inst&fts MO-MSNS.

| TestInstance [ Keyword Query Q | Time | Active Usersi{’ | Total Objects | Relevant Objects |
T1 Queryl 1:48:4[0-9] am 95 8884 183
T2 Query2 1:48:4[0-9] am 95 8884 657
T3 Queryl 11:34:3% am 121 10691 201
T4 Query2 11:34:3% am 121 10691 859
T5 Queryl 17347 1-5]% pm 139 12316 231
T6 Query2 17347 [1-5]% pm 139 12316 1004
T7 Queryl 20:[2-3]4:3% pm 165 14630 254
T8 Query2 20:[2-3]4:3% pm 165 14630 1162

In our experimental studies, we have examined eight tetanoss as sum-
marized in Table 2, denoted @sand designed using the popular Factorial design
process [48], which represent mobile social scenariosrdyatime periods (e.g.,
1:48:4[0-9] corresponds to a network snapshot of 10 secandist8 am), in or-
der to capture different mobility patterns that are inhéererthe GeolLife dataset
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with different number of active users and for different gegin order to vary the
number of relevant objects.

5.2. MO-MSNS Algorithms: MOEA/D-ML, NSGA-II and other M@BAariants

The hybridization of the conventional MOEA/D with a singl8 beuristic that
is used throughout the search is coined Individualistic MIE(note that this hy-
bridization is an optional step for the conventional MOEAf&Bmework [13]). In
this paper, six different Individualistic MOEA/D approashare designed, i.e.,
MOEA/D-Sw, MOEA/D-CH, MOEA/D-DSw, MOEA/D-Sh, MOEA/D-DShnd
MOEA/D-IH, by hybridizing MOEA/D with swap, copy, double sp, shift, dou-
ble shift and inverse heuristics, respectively.

The idea of allowing the competition and cooperation amafiigrént LSs [49]
has given rise to the so-called adaptive strategies wittaMamarckian learning.
The MOEA/D combined with the most basic Meta-Lamarckiamrie®y scheme
which selects LSs with a simple Random Walk (RW) over thelalf meth-
ods is denoted as MOEA/D-RW. This method does not adapt Heast it gives
the opportunity to every LS approach to locally improve auoh. Finally in
this paper, three decompositional MOEAS with different 84eamarckian learn-
ing strategies are designed. That is, (i) MOEA/D-SR thasube Stochastic
Roulette-wheel approach as its learning strategy, (i)MI@EA/D-GN that uses
the Greedy Neighbourhood-based strategy throughout tletesn and (iii) the
proposed MOEA/D-ML with thes-greedy strategy. For ease of reference, the
abbreviations of all MOEA/D variants used in the experinaéséries are summa-
rized in Table 3.

Finally, the proposed MOEA/D-ML is compared with the stafehe-art in
MOEAs based on Pareto-dominance NSGA-II. NSGA-II mairgarpopulation
I P of size N at each generatiogen, for gen™ generations. NSGA-II adopts the
same evolutionary operators (i.e. selection, crossowtnautation) for offspring
reproduction as MOEA/D. The key characteristic of NSGAdIthat it uses a
fast non-dominated sorting and a crowded distance estméir comparing the
quality of different solutions during selection and to uggdthe/ P and thePF'.
We refer interested readers to [6] for details.

5.3. Performance Metrics

The performance of a MOEA is often evaluated from two perspes. That
is, the obtained non-dominated set should be (i) as closetoue Pareto Front as
possible and mainly corresponds to the convergence (oitguaf the obtained
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Table 3: Abbreviations of MOEA/D variants used in the expental series

| Notation | Description |
MOEA/D Conventional MOEA based on Decomposition [13].
MOEA/D-Sw | Individualistic MOEA/D hybridized with Swap Heuristic.
MOEA/D-DSw | Individualistic MOEA/D hybridized with Double-swap Hestic.
MOEA/D-CH | Individualistic MOEA/D hybridized with Copy Heuristic.
MOEA/D-Sh Individualistic MOEA/D hybridized with Shift Heuristic.
MOEA/D-DSh | Individualistic MOEA/D hybridized with Double-shift Heistic.
MOEA/D-IH Individualistic MOEA/D hybridized with Inverse Heuristic
MOEA/D-RW | MOEA/D with the Random Walk learning strategy.
MOEA/D-SR | MOEA/D with the Stochastic Roulette-wheel learning siggte
MOEA/D-GN | MOEA/D with the Greedy Neighbourhood-based learning sgrat
MOEA/D-ML | Proposed MOEA/D with the-greedy learning strategy.

solutions, and (ii) distributed as diversely and uniforralypossible. In the lit-
erature, there is no single metric that can reflect both fdtespects and thus a
number of metrics are often used [50, 6, 11, 7, 51]. In thidtwe have used the
following four metrics:

e Coverage (C): commonly used for comparing two sets of nhon-dominated
solutionsA and B, originally proposed by Zitzler and L. Thiele in [52]. The
C(A, B) metric, which is often considered as a MOEA quality metrad; c
culates the ratio of the non-dominated solution®idominated by the non-
dominated solutions i, divided by the total number of non-dominated
solutions inB. Hence,

_  HreBlFyeA:y <z}

C(A, B) = =

Therefore,C'(A, B) = 1 means that all non-dominated solutionsBrare
dominated by the non-dominated solutionsAn Note thatC(A, B) #
1—-C(B,A).

e Distance from reference set [p): defined by Czyzzak et al. in [53] as

follows:

Y enlminea{d(e. )}

ID(A> = |R‘
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This shows the average distance from a solution in the nederset? to the

closest solution imd. The smaller the value df, is then the closer the set

Ais to R indicating better convergence. In the absence of the réslemce
set (i.e., PF) in MO-MSNS the average distance of each spuwjlg to the
nadir point is used.

e Hypervolume (Iy): originally proposed by Zitzler et al. in [27] indicating

the area dominated by at least one solution in the obtaineetlominated

setA. Therefore high'y indicates better diversity. The metric is formally

defined as
IH(A) = / .o / 1.dZ,
2€Uge A HV (f(x),f*)
where HV (f(z), f*) = [fi(z), f{] x ... x [fm(2), f] is the Cartesian
product of the closed intervalg;(x), f7],i = 1, ..., m. Since we consider
minimization objectives the reference poifit = ( ¥ ..., [x) is the ideal

worst point, i.e..f* = maz,eqfi(x),Vi=1,....m

e Number of Non-Dominated Solutions (VD.S): a straightforward metric
proposed by Weicker et al. in [51] that is usually considdredases of
real-life discrete optimization problems such as the MON&Sshowing
the cardinality or the number of Non-Dominated SolutionsenA, i.e.

NDS(A) = |A].

In these cases, it is more desirable to obtain a high numbéfef(A)
in order to provide an adequate number of Pareto optimakteloiln con-
trast, and usually in cases of continuous optimization,[a3figh number of
N DS is not desirable, since the decision making procedure besanore
complicated and more time consuming. However,theS should be con-
sidered in combination with other metrics (e4y.andC metrics), since it
is usually desirable to have a high numberD S when the solutions is
of high quality (i.e. lowC-metric) and spread (i.e. low-metric) in the
objective space.

5.4. Experimental Layout and Algorithmic Settings for MGING

In the experimental studies on the MO-MSNS problem thabfallseveral
decompositional MOEAs have been examined and comparedthgthbroposed
MOEA/D-ML approach:
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e Experimental series 1examines the effect of each LS on the MOEA/D
individualistically. The conventional MOEA/D approach poposed by
Zhang and Li in [13] is compared with the six individualisMMOEA/D
variants defined above (i.e., MOEA/D-Sw, MOEA/D-DSw, MOEACH,
MOEA/D-Sh, MOEA/D-DSh and MOEA/D-IH).

e Experimental series 2compares MOEA/D-ML and the two best perform-
ing Individualistic MOEA/Ds of Experimental series 1.

e Experimental series 3compares MOEA/D-ML and the MOEA/D-RW vari-
ant that uniformly randomly selects a local search hewgrfstim the pool
of generalized local search heuristics.

e Experimental series 4compares three MOEA/Ds combined with differ-
ent adaptive learning strategies: i) MOEA/D-SR with StatltaRoulette-
wheel , ii) MOEA/D-GN with Greedy Neighbourhood-based feag, and
iil) MOEA/D-ML with e-greedy learning strategy.

e Experimental series 5compares MOEA/D-ML and NSGA-II.

e Experimental series 6provides statistical analysis on the performance of
both MOEA/D-ML and NSGA-II.

e Experimental series 7provides sensitivity analysis on the step size (num-
ber of iterations) of local search of the MOEA/D-ML.

The algorithmic parameters are set as follows: terminatigaria gen™=250
andgen® = 25, population size and number of subproblems120, crossover
rater.=0.9, mutation rate,,=0.5, neighbourhood siZE=10, the size of the pool
of local search heuristicE = 6, the number of iterations for each local search
is set to/ = 10 and the training phase for the MOEA/D with Meta-Lamarckian
Learning approaches is set 46 = 10. For the MOEA/D-ML that utilizes the
proposed-greedy strategy, theis set t00.8. Moreover, in all simulations the
recall and energy objectives are evaluated as in Subse@tnAll algorithms
were coded in Java programming language and run on an Igt€lgRe(M) i5
CPU 2.4GHz Windows 7 server with 4 GB RAM. Note that in our expental
studies we have used the same number of function evaludtoradl methods,
for fairness, and each algorithm is executed 20 times in saady. Statistical
analysis on the multiple runs is provided in the experimlesttadies below.
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Figure 2: Experimental Series 1 (MO-MSNS) - Comparison leetwconventional MOEA/D with
Individualistic MOEA/D variants on two representativettestances T3 and T7.

5.5. Experimental Results for the MO-MSNS problem
The results of the seven experimental series are preseal®aa:b

5.5.1. Experimental Series 1 (MO-MSNS) - Effect of LS on MDEA

In experimental series 1, we examine the effect of each LS 1erMOEA/D
individualistically. The main purpose of this experimesiniot just to test if the
hybridization of the MOEA/D with a single LS improves its pmmance, but
also to examine the behaviour of each LS on various testriostaof the MO-
MSNS problem in general as well as during the evolution. &foee, we examine
and compare the conventional MOEA/D and its six individsiadi variants, i.e.,
MOEA/D-Sw, MOEA/D-CH, MOEA/D-DSw, MOEA/D-Sh, MOEA/D-DShnd
MOEA/D-IH. The algorithms are evaluated on all eight testamces of Table 2
using the performance metrics of Subsection 5.3.

Figure 2 shows that the hybridization of MOEA/D with any Lb&earch
heuristic improves the performance of the conventional M@EnN terms of both
convergence and diversity. The improvement, however,ezeli by some local
search heuristics such as the Copy (MOEA/D-CH), the Double®SMOEA/D-
DSw) and the Inverse (MOEA/D-IH) is higher than the othersr &ample, it
is visually possible to argue that the MOEA/D-CH providesoad convergence
and diversity in both T3 and T7. However, one can say thatésdwt converge
well towards the energy objective. MOEA/D-DSw and MOEA/B;bn the other
hand, provide a better diversity and convergence with i&djpethe energy ob-
jective. These are the test instances with fewer relevajictshof interest and
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Table 4: Results of Experimental Series 1 (MO-MSNS) - Corisparbetween the conventional
MOEA/D and the six Individualistic MOEA/D variants in ternod the performance metrick,
andIy. The best results of each test instance are denoted in bold.

Alg: MOEA/D M-Sw M-CH M-DSw M-Sh M-DSh M-IH
TI I Ta D Ta I TH D TH 1) Ta 1) Ta 1) TH
T 0.2602 | 0.2600 || 0.0912 | 0.4980 || 0.0595 | 0.7120 || 0.0647 | 0.8450 || 0.0856 | 0.5670 || 0.0759 | 0.7370 || 0.0640 | 0.6690
z 0.2257 | 0.2590 || 0.0769 | 05390 || 0.0445 | 0.9270 || 0.0660 | 0.7710 || 0.0754 | 0.6760 || 0.0584 | 0.7500 || 0.0849 | 05920
3 0.3416 | 0.0710 || 0.0925 | 05200 || 0.1030 | 0.2620 || 0.0760 | 0.7000 || 0.1044 | 0.5170 || 0.0920 | 05290 || 0.0815 | 0.8160
Z 0.1477 | 0.3190 || 0.0694 | 0.6680 || 0.0421 | 0.8580 || 0.0646 | 0.7780 || 0.0990 | 0.5600 || 0.1290 | 0.4310 || 0.0667 | 0.6880
5. 0.1508 | 0.2710 || 0.1472 | 0.3490 || 0.0827 | 0.5280 || 0.0730 | 0.7590 || 0.1112 | 0.3910 || 0.0955 | 0.4740 || 0.0945 | 05890
6: 0.2907 | 0.1460 || 0.0819 | 0.7050 || 0.0528 | 0.7330 || 0.0672 | 0.7330 || 0.0834 | 0.7090 || 0.1190 | 04130 || 0.0737 | 0.6310
7. 0.1653 | 0.2900 || 0.1533 | 0.1320 || 0.0873 | 0.4380 || 0.0657 | 0.8220 || 0.1195 | 0.3340 || 0.0960 | 0.3920 || 0.0854 | 0.5010
8: 0.2283 | 0.1090 || 0.0687 | 0.6560 || 0.0536 | 0.8540 || 0.0631 | 0.7440 || 0.0780 | 0.5410 || 0.1037 | 0.3420 || 0.0834 | 05750

mean: | 023 | 022 || 010 | 0bL [| 007 | 066 [ 007 | 076 ][ 009 | 053 [ 008 | 050 || 007 | 063
sid. | 007 | 009 || 003 | 019 || 002 | 023 || 000 | 005 || 002 | 0dz || 002 | 015 || 00L | 009

therefore require more effort in finding the “appropriatesets to participate in
the Query Routing Tree (QRT). This is also shown by the diedisresults sum-
marized in Tables 4, 5 and Figure 3. Table 4 shows a compaoistie MOEA/D
variants in terms of the distance between the obtained PRhenteference set
(Ip) and the hypervolumelf;). The results show that the MOEA/D-CH con-
verges closer to the reference set in five out of eight tesmaes (lowest value of
Ip metric along rows) and provide the best diversity in threg itesstances (high-
est value off ; metric along rows). Moreover, the MOEA/D-DSw obtains a &ett
Ip in the remaining three test instances and provide a betterstiy in half of
the test instances. Finally, the MOEA/D with the Inverse kigic (IH) provides
the best diversity in test instance T3.

Figure 3, shows a comparison between the MOEA/D variantsrmg of the
C-metric. The colored squares of the subfigures represe(ty,B) value, where
A and B are the MOEAs depicted on the vertical and horizontataf the sub-
figure, respectively. For example, in T1 of subfigure 3(a8,fifth row represents
all C(M-CH,B) values of the MOEA/D with the Copy Heuristic{J with respect
to the remaining algorithms, substituting B with the regjpecalgorithm shown
on the x-axis from left to right. The darker a square is thsetdhe C-value is to
1. Therefore, examining the top row of each subfigure (ak®)résults show that
the PF obtained by the conventional MOEA/D does not domiaayeof the PFs
obtained by the other MOEA/D hybrids.

In addition, the PF obtained by the MOEA/D-CH is of higher kifyacom-
pared to the other MOEA/Ds even if it does not converge towdh@ energy
objective in some test instances (see Figure 2) as it is skscliabove. Therefore,
one can say that there is a preference of different LS appesaiowards differ-
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Table 5: Results of Experimental Series 1 (MO-MSNS) - Corisparbetween the conventional
MOEA/D and the six Individualistic MOEA/D variants in terra§ NDS. The best results of each
test instance are denoted in bold.

TI MOEA/D | M-Sw | M-CH | M-DSw | M-Sh | M-DSh | M-IH
1: 9 58 110 95 57 68 82
2: 13 63 163 94 64 97 49
3: 5 52 60 83 39 53 54
4: 30 85 156 91 53 29 84
5: 23 30 72 79 40 52 59
6: 8 63 138 64 64 40 80
7 18 30 67 86 37 57 64
8: 16 80 110 110 77 58 62
mean: 15.25 57.63 | 109.5| 87.75 | 53.88| 56.75 | 66.75
std: 8.35 20.23 | 40.53 | 13.44 | 14.39| 20.13 | 13.49

ent objective functions for the same test instances of theegaroblem domain.
This is the reason why the quality of the non-dominated smhstobtained by
MOEA/D-DSw and MOEA/D-IH is also higher in some cases. Hinalable 5
summarizes the number of NDS obtained by each MOEA/D vaf@ardgach test
instance T1-T8 of Table 2. The results show that MOEA/D-Chbivtes more
Pareto-Optimal choices to the Decision Maker in five out ghetest instances,
with MOEA/D-DSw having the higher NDS in the remaining three
The conclusions drawn from experimental series 1 are suinetibelow:

(i) the traditional MOEA/D is outperformed by almost all M@ hybrids in
almost all cases, showing that the hybridization with I@=srch heuristics
improves its performance and

(ii) there is preference in the choice of the local searchribgain different test
instances as well as for different objectives of the santanistance.

The next experimental series aims to further justify thé dasclusion of ex-
perimental series 1.

5.5.2. Experimental Series 2 (MO-MSNS) - Effect of Metadrakman Learning:
comparing MOEA/D-ML and two best performing individuat$tOEA/Ds

In this experimental series, we compare our proposed MOBMIDmethod
and the two individualistic variants MOEA/D-CH and MOEAMDSw that per-
formed best in experimental series 1 (that is, MOEA/D hyisad with the Copy
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Figure 4: Experimental Series 2 (MO-MSNS) - The effect of Meamarckian Learning: The
proposed MOEA/D-ML, i.e., MOEA/D with the-greedy Meta-Lamarckian learning approach
is compared with MOEA/D-CH and MOEA/D-Sw, the best perfanmindividualistic MOEAs
(hybridized with the Copy and Double-Swap heuristics, eesipely) of experimental series 1.

and Double Swap Heuristics, respectively). We adopt battissical comparison
in terms of the performance metrics introduced in Subse&i8, as well as visual
comparison where necessary in all test instances of Table 2.
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Table 6: Results of Experimental Series 2 (MO-MSNS) - MOEA/D (i.e., the proposed
MOEA/D with thee-greedy learning strategy) is compared with individuaigariants MOEA/D-

CH and MOEA/D-DSw (i.e., MOEA/D’s hybridized with the Copyé Double Swap Heuristic,
respectively), that performed well in Experimental Sefies terms of the performance metrics
Ip, I and N DS (top) and coverage metri€ (bottom). The best results of each test instance are
denoted in bold.

Alg: MOEA/D-ML MOEA/D-CH MOEA/D-DSw MOEA/D-ML MOEA/D-CH MOEA/D-DSw
Tl I TH I TH I TH NDS NDS NDS
1 0.0506 | 0.9210 | 0.0595 | 0.6640 [ 0.0647 | 0.8520 150 110 95
2: 0.0436 | 0.8980 | 0.0445 | 0.9160 [ 0.0660 | 0.7330 219 163 94
3: 0.0491 | 0.9000 | 0.1030 | 0.2320 | 0.0760 | 0.6280 160 60 83
4 0.0373 | 0.9160 | 0.0421 | 0.8210 | 0.0646 | 0.6730 255 156 91
5: 0.0537 | 0.9160 | 0.0827 | 0.4630 [ 0.0730 | 0.6810 149 72 79
6: 0.0485 | 0.8880 | 0.0528 | 0.6640 [ 0.0672 | 0.6560 168 138 64
7. 0.0455 | 0.9270 | 0.0873 | 0.4090 | 0.0657 | 0.7840 171 67 86
8: 0.0288 | 0.8240 | 0.0536 | 0.8250 [ 0.0631 | 0.7070 452 110 110
mean; | 004 | 090 | 007 | 062 | 007 | 071 [ 2155 [ _ 1095 | 87.75
std: | 001 | 003 | 002 | 024 | 000 | 007 || 10249 | 4053 | 13.44
TestInst. | C(MOEA/D-ML,MOEA/D-SR) C(MOEA/D-SR,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-GN) C(MOEA/D-GN,MOEA/D-ML)
1 0.5533 0.2000 0.8133 0.0526
2: 0.8721 0.0000 0.8447 0.0000
3: 0.4375 0.0000 0.7937 0.0000
4 0.4510 0.4423 0.7569 0.0000
5: 0.5235 0.4028 0.8054 0.0000
6: 0.3433 0.3406 0.7619 0.0000
7. 0.4152 0.2388 0.8070 0.0116
8: 0.5752 0.5273 0.8429 0.0455
mean: | 0.52 | 0.27 il 0.80 | 0.01
std: | 0.16 [ 0.20 I 0.03 [ 0.02

MOEA/D-ML is more effective than the individualistic MOEB/ variants.
The results of Figure 4 show that the proposed approachgedetter diversity
and convergence than the two best performing individualepproaches (i.e.,
MOEA/D-CH and MOEA/D-DSw) of experimental series 1. Heresimore im-
portant to notice the adaptive behaviour of the proposedithyiith respect to
the other two approaches. For example, considering theriexgetal results of
test instancel'7 (left bottom corner of Figure 4), it is evident that on the one
hand MOEA/D-CH provides high quality non-dominated salos for the sub-
problems that favor the recall objective (i.e., upper hathe PF) and stops con-
verging when the weights start favoring the energy objectn the other hand,
the MOEA/D-DSw provides some low-quality (compared to tho§ MOEA/D-
CH) non-dominated solutions in that part of the PF and cayegewvell towards
the energy objective. The proposed MOEA/D, however, adalytifollows the
pattern of each local search heuristic where they perforih afesorbs the best
non-dominated solutions and finally provides a diverse agt Quality set of
Pareto-optimal solutions. The improvement on the perfoiceaf the MOEA/D
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hybridized with an adaptive local search and a Meta-Lamandiearning strategy
is also summarized in the statistical results of Table 6. rBiselts show that the
MOEA/D-ML clearly outperforms the individualistic MOEA/Rariants in all test
instances with respect to all metrics adopted in this articl

Table 7: Results of Experimental Series 3 (MO-MSNS) - Theppsed MOEA/D-ML, i.e.,

MOEA/D with the proposed Meta-Lamarckian learning applo&egreedy) is compared with
the MOEA/D-RW Heuristic in terms of the performance metidgs Iy, ND.S andC. The best

results of each test instance are denoted in bold.

Alg: MOEA/D-ML MOEA/D-RW MOEA/D-ML | MOEA/D-RW || C(MOEAD-ML, | C(MOEA/D-ML,
T 15 Ta 15 Ta NDS NDS MOEA/D-RW) MOEA/D-RW)
T 00479 | 0913 | 0.0557 | 0.9 150 113 0.74 0.09

2 0.04 089 | 0049 | 0.794 219 98 0.78 0.06

3 0045 | 091 | 0050 | 0.74 160 88 08 0.02

Z 0035 | 094 0.06 0.60 255 86 0.7 0.00

5 0.05 0.93 006 | 0.797 149 85 0.71 0.12

6 0044 | 088 | 0047 | 0.80 168 118 08 0.05

7 0042 | 0092 | 0064 | 084 71 86 0.7 0.08

8 0.02 086 | 0063 | 0.737 452 81 0.6 0.23
mean: | 0.0418 | 0.8986 | 00678 | 0.7913 || 21612 | 9437 ]| 07210 | 0.0812
sid: | 0.0081 | 0.0061 | 0.0344 | 0.0617 || 102.6846 | 139687 || 0.060 | 0.0721

5.5.3. Experimental Series 3 (MO-MSNS) - Effect of Metadrakian Learning:
comparing MOEA/D-ML and MOEA/D-RW

In this experimental series, we compare the proposed MOE#LD Meta-
Lamarckian learningefgreedy strategy) and the MOEA/D with Random Walk
(MOEA/D-RW) that uniformly randomly selects a local seah&uristic from the
pool of local search heuristics. We adopt both statistioahjgarison in terms of
the performance metrics introduced in Subsection 5.3 dsaweglsual comparison
where necessary in all test instances of Table 2.

The results of Table 7 show that the proposed MOEA/D-NHgieedy) tech-
nique provides a more diverse (i.e., high) Pareto Front, that is closer to the
reference set (i.e., lowp) and with more Pareto optimal solutions (i.e., high
N DS) of higher quality (i.e., highC) compared to the MOEA/D-RW variant,
in all eight test instances. In particular, MOEA/D-ML prdeis abouR0% better
Ip than MOEA/D-RW on average, it approximates the referentdgaround
90% compared to aroun&0% of MOEA/D-RW and provides significantly more
Pareto Optimal solutions. Finally, the Pareto Front sohgiobtained by the pro-
posed approach dominate arourys of the Pareto Front solutions obtained by
MOEA/D-RW while only around8% are dominated, on average.

Furthermore, Figure 5 visually shows the dominance of tbp@sed MOEA/D-
ML approach with respect to MOEA/D-RW in terms of both divereind conver-
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Figure 5: Experimental Series 3 (MO-MSNS) - Comparison of BAZD-ML (with the e-greedy

learning strategy) with MOEA/D-RW (that uniformly randoyrdelects at each hybridization step
a LS heuristic from the pool of generalized LS heuristics)

gence, in all eight test instances. Here it is important ticedhat MOEA/D-RW
does not obtain Pareto-optimal solutions of low energy aomngion when recall is
low (i.e., bottom-left of plots) and obtains solutions ofop@nergy-consumption
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Figure 6: Experimental Series 3 (MO-MSNS) - The effect of Meamarckian Learning: Com-
parison of the proposed MOEA/D-ML (with thegreedy learning strategy) with MOEA/D-RW
(that uniformly randomly selects at each hybridizatiopstd S heuristic from the pool of gener-
alized LS heuristics) in terms of convergence of the intigppoaulation during the evolution.

when the recall is high (top-right of plots). This is due te tlact that random
walk does not search the objective space efficiently ancetbiex cannot obtain
solutions close to the extremes.
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Finally, Figure 6 demonstrates the convergence of thenatguopulations
(i.e., IP) of the two approaches compared in this section during tiodugon.
Note that for better visualization we randomly selected presented the results
of three test instances (i.e., T2, T6 and T8) for generatipms = 1, 50, 250.
The results show that at the beginning, ign = 1, Figure 6 (left), both ap-
proaches start from a similar low-quality, low-diversitygqulation. The proposed
MOEA/D-ML approach, however, after few generations, ign = 50, Fig-
ure 6 (center), starts improving both the diversity and itpiaf the obtained so-
lutions. This is due to the fact that Meta-Lamarckian leagraapproach requires
some iterations to start learning and adapting to the nekedaah test instance
with respect to the local search selection. At the end, g@,= 250, Figure 6
(right), MOEA/D-ML provides a better approximation towarthe reference set
compared to the MOEA/D-RW. Here it is important to noticetttee better per-
formance of the proposed approach is both in terms of coenermand diversity.
The latter, for example for test instance T2 (top-row of Fey8), improves ap-
proximately10% in the first 50 generations and anothkéf; for the last 200 gen-
erations, where the MOEA/D-RW imprové8% in the first 50 generations and
just12% in the last 200 generations.

5.5.4. Experimental Series 4 (MO-MSNS) - Comparison betwéterent Meta-
Lamarckian Learning strategies

In this experimental series, we present a comparison betiveedecompo-
sitional MOEA with the three Meta-Lamarckian learning ttraes introduced
in Subsection 5.2, namely, MOEA/D-SR (Stochastic Rouetteel), MOEA/D-
GN (Greedy Neighbourhood-based) and MOEA/D-Mlgteedy), in terms of the
performance metrics introduced in Subsection 5.3.

The results of Table 8 show that the proposed MOEA/D-ML apphooutper-
forms both MOEA/D with Meta-Lamarckian learning variant©O®A/D-SR and
MOEA/D-GN in most cases. In particular, MOEA/D-ML providasnore diverse
(i.e., highly) Pareto Front, that is closer to the reference set (i.e./jgvand with
more Pareto-optimal solutions (i.e., highD.S) in six out of eight test instances.
Moreover, the PF obtained by the proposed approach is oéhgglelity (i.e., high
C) compared to the PF obtained by the MOEA/D-SR in six casesta@&F ob-
tained by the MOEA/D-GN in all eight cases. Therefore, itdasonable to argue
that thee-greedy collaboration between the two Meta-Lamarckiarr@gghes in
more effective than using them individually.
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Table 8: Results of Experimental Series 4 (MO-MSNS) - Theppsed MOEA/D-ML, i.e.,
MOEA/D with the proposed Meta-Lamarckian learning appto@egreedy) is compared with the
MOEA/D-SR (Stochastic Roulette-wheel) and the MOEA/D-Gdedy Neighbourhood-based)
approaches in terms of the performance metfigs/y and N DS (top) and coverage metric
(bottom). The best results of each test instance are demobexd.

Alg: MOEA/D-ML MOEA/D-SR MOEA/D-GN MOEA/D-ML | MOEA/D-SR | MOEA/D-GN
TI D T D TH D T NDS NDS NDS
T 0.04% | 09430 | 0.0498 | 0.8870 | 0.0656 | 0.7430 150 147 76
2 0.0436 | 0.8940 | 0.0404 | 00770 | 0.0765 | 0.5620 219 250 75
3 0.0491 | 0.0090 | 0.0510 | 00280 | 0.0734 | 0.7320 160 150 75
Z 0.0373 | 09310 | 0.0471 | 0.8500 | 0.0906 | 0.5120 255 213 54
5 0.0537 | 0.0260 | 0.0502 | 00140 | 0.0574 | 0.7840 149 167 88
6: 0.0485 | 0.9270 | 0.0566 | 0.7820 | 0.0890 | 0.5810 168 101 63
7 0.0455 | 0.9260 | 0.0565 | 0.8740 | 0.0951 | 0.4870 71 129 53
8 0.0288 | 0.8400 | 0.0525 | 0.8170 | 0.1118 | 0.2630 752 139 35
mean: | 0.0445 | 0912 | 0.0506 | 0.8786 | 0.08242 | 0583 || _ 21565 | 162 [ 64875
sid: | 0.0079 | 0.03263 | 0.0052 | 0.06257 | 00175 | 01712 || 10249 | 4792 |  16.98

TestInst. | C(MOEA/D-MLMOEA/D-SR) | C(MOEA/D-SR,MOEA/D-ML) || C(MOEA/D-ML,MOEA/D-GN) | C(MOEA/D-GN,MOEA/D-ML)
T 0.4267 0.3605 0.7800 0.0395
z 0.2466 05360 0.7626 0.0000
3 0.6563 0.1667 0.8313 0.0000
z; 05569 0.1268 0.6745 0.0000
5: 0.1879 0.6707 0.7383 0.1023
& 05774 0.2178 0.6786 0.0000
T 0.3743 0.3643 0.6667 0.0000
8: 0.7458 0.7410 0.5398 0.0000

mean:_| 0471 [ 0.397 i 0.70 [ 0.01
sid | 0.196 | 0.23 I 0.089 | 0.036

5.5.5. Experimental Series 5 (MO-MSNS) - Comparison betWwé@EA/D-ML
and NSGA-II

In this experimental series, we compare the proposed MOE#itD Meta-
Lamarckian learningsgreedy strategy) and NSGA-II, the state-of-the-art oretear
dominance based approaches. We adopt both a statisticabcimon in terms of
the performance metrics introduced in Subsection 5.3 adsase visual compar-
ison in all test instances of Table 2.

Figure 7 visually shows the dominance of the proposed MOEMIDap-
proach with respect to NSGA-II in terms of both diversity aahvergence, in all
eight test instances. MOEA/D-ML provides a diverse set of-dominated solu-
tions that smoothly cover the objective space where at thee game its quality
adequately approximates the extreme objective fitnesgsdie., energy = 0 and
recall = 1). Onthe other hand, NSGA-II in the absence of Metararckian learn-
ing and local search obtains a PF of both poor diversity amaditguln particular,
NSGA-II finds difficulties in obtaining non-dominated sobirts in the direction
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Figure 7: Experimental Series 5 (MO-MSNS) - ComparfadtMOEA/D-ML (with the e-greedy
learning strategy) with NSGA-Il in all test instances T1-df8lable 2.

of the more demanding energy objective.
The results of Table 9 support the previous observatiorceMOEA/D-ML

6Note that a common legend for all sub-figures appears in ttterheright box.
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Table 9: Results of Experimental Series 5 (MO-MSNS) - Thgpsed MOEA/D-ML is compared
with NSGA-II in terms of the performance metri€s, Iy, N DS andC. The best results of each
test instance are denoted in bold.

Alg: MOEA/D-ML NSGA-II MOEA/D-ML | NSGA-lI || C(MOEA/D-MLNSGA-Il) | C(NSGA-Il, MOEA/D-ML)
T 15 TH o [ I NDS NDS

T 0.05 095 | 0.9 | 0.45 150 5 0.64 0.00
z 0.04 094 | 018 | 043 219 15 0.61 0.00
3 0.05 093 | 0.21 | 0.40 160 11 0.56 0.00
Z 0.04 096 | 0.6 | 0.38 255 20 0.48 0.00
5. 0.05 095 | 020 | 032 149 3 058 0.00
6 0.04 093 | 0.21 | 0.40 168 10 0.56 0.00
7. 0.04 092 | 017 | 041 71 20 031 0.30
8: 0.03 091 | 0.21 | 0.30 452 10 0.46 0.00
mean: | 005 | 008 [ 021 [ 039 [| 2165 | 1370 ]| 054 [ 0.04
sid: | 0.0027 | 00135 | 003 | 0.0 || 10249 | 406 || 0.1046 | 0.00

provides better results in all four performance metrichwmagispect to NSGA-II. In
particular, MOEA/D-ML provides about four and three timetbr performance
with respect to thd, and Iy metrics, respectively. It also provides around 200
more non-dominated solutions, on average, and its non+tited solutions dom-
inate 54% of the non-dominated solutions obtained by NSGA-Il. MOEAYIL
also provides a low standard deviation in most cases indgat consistency on
its performance along different test instances in the saf®®M

Table 10: Results of Experimental Series 6 (MO-MSNS) - Stial analysis on the best results
obtained by MOEA/D-ML (M) and NSGA-II (N) in terms of mean asthndard deviation on
the performance metrick,, Iy, NDS andC in all eight test instances (T1-T8). Student t-test
is performed to evaluate the significance of the final resiNiste thath="+" indicates rejection
of the null hypothesis that the two sets are not significadifferent with a significance level

a = 0.05, whereh=“-" indicates the alternative.
Metric: | Ip(M) | Ip(N) | Ig(M) | Ig(N) | NDS(M) | NDS(N) | C(M,N) | C(N,M)
mean: 0.05 0.21 0.98 0.39 2155 13.70 054 0.00
std: 0.0027 0.03 0.0135 0.1 102.49 4.06 0.1046 0.04
t-test (h): | + | + | + | +

5.5.6. Experimental Series 6 (MO-MSNS) - Statistical Agialy

In this experimental study, we perform statistical anaymn the results ob-
tained by MOEA/D-ML and NSGA-II on 20 runs x eight (8) testtiasces. In par-
ticular, the two approaches are compared with respect torttean and standard
deviation values, as well as by using statistical hypothests, i.e., th&tudent's
sample t-tesand theone-way ANOVAThe t-test is carried out for comparing the
results between the two approaches and the one-way ANOV&iiged out when
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the results of multiple runs of each algorithm is compareath&est returns ai
value on the null hypothesis that the average results arsigroficantly different
against the alternative that the average results are signify different. The) =
“-” indicates a failure to
reject the null hypothesis with a given significance level

“+” indicates a rejection on the null hypothesis ang

Table 11: Results of Experimental Series 6 (MO-MSNS) - Stighl analysis on the results ob-
tained by MOEA/D-ML (M) and NSGA-II (N) in all 20 runs in termsf average and standard
deviation on the performance metriés, Iy, NDS andC. Moreover a one-way ANOVA is

performed in order to evaluate the robustness of the twoosmhes. Note that="+" indicates
rejection of the null hypothesis that the sets obtainedndutie 20 runs for each approach are not
significantly different with a significance leval= 0.05, whereh="-" indicates the alternative.

Metric: Ip(M) | Ip(N) | Ig(M) | Ig(N) | NDS(M) | NDS(N) | C(M,N) | C(M,N)
T1 mean: 0.05 0.21 0.98 0.39 157.30 13.70 0.54 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T2 mean: 0.05 0.18 0.98 0.44 159.20 16.70 0.61 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T3 mean: 0.05 0.20 0.94 0.40 147.30 13.80 0.57 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T4 mean: 0.05 0.18 0.95 0.36 157.90 16.20 0.54 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T5 mean: 0.04 0.20 0.97 0.35 191.00 15.20 0.49 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T6 mean: 0.04 0.20 0.97 0.37 184.50 15.90 0.52 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T7 mean: 0.04 0.19 0.96 0.36 175.50 15.20 0.46 0.03
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T8 mean: 0.04 0.19 0.96 0.34 206.30 17.50 0.46 0.00
std: 0.0027 0.03 0.0135 0.10 11.2354 4.06 0.1046 0.00
T1-8 mean: 0.05 0.19 0.96 0.38 172.38 15.53 0.53 0.00
std: 0.0018 0.01 0.01 0.02 25.90 1.54 0.03 0.03
ttest(h) | + + + +
Anova p: 0.4240 0.8180 0.1597 0.7773 0.2836 0.3690 0.3782 0.4484
Anova h: - - - - - - - -

Table 10 shows a t-test statistical analysis on the besltsesfueach MOEA
approach for each performance metric. This test indicategeation ¢ = +) of

the null hypothesis that the results obtained between tbeapproaches are not

significantly different. This supports our previous obsgions that MOEA/D-ML
significantly outperforms NSGA-II.

Table 11 shows a statistical analysis of the two approaches2® indepen-
dent runs on all eight test instances. The top part of the talicates the mean
and standard deviation results for each test instafigeyer 20 runs, the middle
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part shows the mean and standard deviation of all 20x8=Xsh&ances (T1-T8)
of each performance metric for both the MOEA/D-ML and NSGAFhe results
clearly demonstrate the superiority of MOEA/D-ML in all tésstances individu-
ally as well as in all runs together with respect to all parfance metrics, since it
provides better mean values and better standard deviatamiost all cases. The
bottom part of the table shows the results of the two statishiypothesis tests
with a significance levelr = 0.05. The t-test indicates a rejectioh & +) of
the null hypothesis that the results obtained between tbeapproaches are not
significantly different in all eight test instances over20lruns. The ANOVA test
demonstrates the robustness of the proposed approachta2@ independent
runs, since the results show a failure to rejéct{ +) the null hypothesis that
the results are not significantly different ¢~ «). This indicates that the pro-
posed MOEA/D-ML approach, as well as NSGA-II, consisteptigvide similar
performance over a number of independent runs.

5.5.7. Experimental Series 7 (MO-MSNS) - Sensitivity Asiglgn step size of
Local Search

3 3

1 ‘ ‘ ‘ ‘ Y R 300 \

—+—MOEA/D-ML - 1
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Figure 8: Experimental Series 7 (MO-MSNS) - Sensitivity Asés: The effect of step size (iter-
ations) of local search heuristics on MOEA/D-ML approachest instance T3.

In this last experimental series, it is examined how thellsearch step-size
(i.e., the number of iterations each time a local searchistauis selected) affects
the performance of the proposed MOEA/D-ML approach witlpeesto the qual-
ity and diversity of the obtained Pareto-Front as well agdggired CPU time (in
seconds) required to obtain that particular non-dominagtaf solutions over a
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fixed termination criterion (i.e., fixed maximum number ohgeations). Figure 8
clearly shows a trade-off between the quality and diversitye obtained PF and
the required CPU time. The increase of the local searchsgepresults in a non-
linear improvement on the quality and diversity of the PF nieg@ that the more
iterations allowed for the local search the better the tesare, but the improve-
ment decreases as the step-size increases. On the otheth®imtrease on the
step-size cause a significant increase of the CPU time. dieren average step-
size=10 is considered as a good choice providing both goalitgand diversity
in the PF and a reasonable CPU time, at the same time.

5.6. Generalizability: Permutation Flow Shop Schedulimgti®em (PFSSP)

In this subsection, we evaluate the performance of the megpdMOEA/D-
ML approach on the multi-objective Permutation Flow Shope#tuling Problem
(PPFSP) with respect to the popular MOGLS approach propgagétiin order to
validate its generalizability over a well-known combirngbMOP.

Given a permutation af jobs and a series oft machines, andfor=1,...,n
andk = 1,...,m, the processing timeB(i, k) of job 7 on maching: and the due
datesd; of job i, PFSSP can be formulated as follows: Each of theg#hs has
to be processed sequentially from the first machine to theitathe same order.
In other words, sequence changes are not allowed, so oncedence of jobs
is scheduled on the first machine, this sequence remainsnget on the other
machines. After completion on one machine a job joins theigu the next ma-
chine, all queues are assumed to operate under the FIF@IdisciEach machine
can process at most one job at any given time, and it can nottéeupted. Ma-
chines never breakdown and are available throughout theglsting period. Each
job is available at time zero, and can be processed by at meshachine in any
given time. The set-up times of the jobs on machines are segquadependent
and are included in processing times.

The aim is to determine a permutatien= (7, 1, ..., 7,), i.€., a processing
order of the jobs on each machine, which minimizes the falgvtwo objectives:
i) makesparC,,.. (), and i) maximum tardiness, ., ().

Let C'(m;; k) denote the completion time of jobh on machinek. Then the
completion times for this permutation can be recursivelgudated as follows:
C(m,1) = P(m, 1)

(mi,1) = C(mi—1,1) + P(m;, 1), (2 <i<n);
C'(m, k) =C(m,k—1)+ P(m, k), 2<k<m);
C(mi, k) = max{C(m;i_1,k),C(m, k—1)}+P(m, k), 2<i<n,2<k<m).
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The makespan (total completion time) is the time requirezbtaplete the last
job of permutationr on the last maching:, defined as’,,,..(7) = C(m,, m).

The lateness of job; is defined ad.,, = C(m;, m) — d,, and the tardiness of
job 7, is defined a9, = max{L,,,0}. The tardiness of permutationis defined
aSTmaz(ﬂ') = maxlgign{Tm}.

5.6.1. Experimental Setup and Algorithms for PFSSP

We evaluate the performance of MOEA/D-ML on eight benchntask in-
stances ofn -machinep-job permutation flow shop scheduling problems as sum-
marized in Table 12.

Table 12: Test Instances (PFSSP) - T1-T4 refer to the teblgmts from Ishibuchi et. al. [7] and
T5-T8 refer to the test problems from Bin-Bin Li et. al. [14].

Test Instance # of jobs | # of machines| o | [
T1 20 20 - -
T2 40 20 - -
T3 60 20 - -
T4 80 20 - -
T5 20 10 0.2]| 0.6
T6 20 10 0212
T7 20 10 0.4] 0.6
T8 20 10 04|12

The first four test instances (i.e., T1-T4) were initiallyfided in [7] as fol-
lows: the processing time of each job on each machine wadigoess a random
integer in the intervall, 99]. The due date of each job was specified by adding
a random integer in the interval-100, 100] to its actual completion time in a
randomly generated schedule.

The next four test instances (i.e., T5-T8) were initiallyided in [14] as fol-
lows: the processing time of each job in every machine isoumify distributed in
interval 1, 99], whereas the due date of each job is uniformly distributedter-
val [Q(1 —a — (b/2)),Q(1 — a+ (b/2))], where a and b represent the tardiness
factor of jobs and the dispersion range of due dates, ragpcand( is a lower
bound of makespan estimated as:
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m n k—1 m
) = max{ max E Dik, Max E Di k + min E i + min E Di .
i — T 1<k<m | 4 - ’ 7 = ’ i ’
= 1= =

I=k+1

Then the following four scenarios about due dates are cergildas in [14], where
each scenario is determined by a different combination @ividues ofz andb.

In general, the due dates are more restrictive whercreases, whereas the due
dates are more diversified whéincreases.

T5: Scenario 1) low tardiness factar £ 0.2) and small due date range £ 0.6);
T6: Scenario 2) low tardiness factar £ 0.2) and wide due date rangé € 1.2);
T7: Scenario 3) high tardiness factar£ 0.4) and small due date range £ 0.6);
T8: Scenario 4) high tardiness factar£ 0.4) and wide due date rangk € 1.2);

We have compared the proposed MOEA/D-ML against (i) the popMOGLS
that also does not utilize any problem-specific heurisgag.( NEH [14]), and (ii)
all MOEA/D variants summarized in Table 3, except the MOEAZH, since the
Copy Heuristic (CH) causes infeasible solutions in the AFES%tead MOEA/D-
SwA (Swap Adjacent) is used. The algorithmic parameterfienfollowing ex-
perimental studies are set as follows: termination cotetien”"=1000, popula-
tion size and number of subproblems500, crossover rate=0.8, mutation rate
r,»=0.2, neighbourhood siZE=14, the size of the pool of local search heuristics
L = 6, the number of iterations for each local search is set te 10 and the
training phase for the MOEA/D with Meta-Lamarckian Leagni@pproaches is
set tog’ = 100. For the MOEA/D-ML that utilizes the proposeegreedy strat-
egy, thee is set t0).8. Note that in our experimental studies we have used the same
number of function evaluations for all methods, for faigesnd each algorithm
is executed 20 times in each study.

5.6.2. Experimental Series 1 (PFSSP) - MOEA/D-ML vs. MOGLS

In experimental series 1, we compare the performance oftippped MOEA/D-
ML approach against the MOGLS in all eight test instances Ti1-T4 from [7]
and T5-T8 from [14]) of Table 12 in terms of all performancetnuos introduced
in Subsection 5.3.

Figure 9 shows the superiority of the proposed approach atsenapplied to
this well-known multi-objective combinatorial problemm particular, MOEA/D-
ML provides better quality and diversity than MOGLS in algjbki test distances.
The superiority of MOEA/D-ML increases as the complexitytlod test instances
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ing strategy) with MOGLS in both the test instances T1-T4f({@] and T5-T8 from [14].

increases. That is the performance of MOGLS, for examplegshinstances T1
(the first test instance of [7] with the lowest number of johay T5 (the first
test instance of [14] with the lowest values of parameteend () is relatively

comparable to, but slightly worse than, MOEA/D-ML. This isra evident in the
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Table 13: Results of Experimental Series 1 (PFSSP) - TheoggeipMOEA/D-ML is compared
with MOGLS in terms of the performance metrits, Iy, NDS andC. Note that T1-T4 refer to
the test problems OF Ishibuchi et. al. [7] and T5-T8 refeth® test problems OF Bin-Bin Li et.
al. [14]. The best results of each test instance are denoteald.

Alg: MOEA/D-ML MOGLS MOEAD-ML | MOGLS || C(MOEA/D-MLMOGLS) | C(MOEA/D-ML,MOGLS)
T 15 T 15 To NDS NDS

T 6214 | 009 | 56.5 | 0.07 29 8 0.72 0.00
2 11503 | 0.6 | 224.65 | 003 30 11 0.80 0.00
3 21318 | 008 | 322.82 | 0.04 29 1T 0.79 0.00
x: 26499 | 0.06 | 687.43 | 0.02 24 5 058 0.00
5 4954 | 003 | 6693 | 002 16 10 056 0.20
6 69.76 | 0.08 | 8201 | 0.5 27 11 0.70 0.00
7 57.74 | 003 | 9452 | 002 4 6 057 0.17
8 7117 | 008 | 99.65 | 0.6 24 12 0.79 0.00
mean: | 112.94 | 0.063 | 20427 | 0038 || 2412 | 105 ]| 0.688 [ 0.046
sid: | 8144 | 0023 | 21602 | 0.019 || 608 | 396 | 0.104 | 0.086

statistical results summarized in Table 13.

Table 13 shows that MOEA/D-ML outperforms MOGLS in almodttabt
instances with respect to all performance metrics. In palar, MOEA/D-ML
provides two times better performance in both fheand I; metrics. It also
provides about two times more non-dominated solutions esddan-dominated
solutions dominaté8% of the non-dominated solutions obtained by MOGLS, on
average. MOEA/D-ML also provides a relatively low standdeviation in all
cases indicating a consistency at its performance aloffgrelift test instances in
the well-known PFSSP.
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Figure 10: Experimental Series 2 (PFSSP) - Sensitivity $sial The effect of step size (itera-
tions) of local search heuristics on MOEA/D-ML approach est instance T4.
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5.6.3. Experimental Series 2 (PFSSP) - Sensitivity Anatysistep size of Local
Search

Similarly to experimental series 7 (Subsection 5.5.7) efMO-MSNS prob-
lem, this experimental series examines how the local sestaghsize (i.e., the
number of iterations each time a local search heuristiclests) affects the per-
formance of the proposed MOEA/D-ML approach with respet¢h&oquality and
diversity of the obtained Pareto-Front as well as the regu€PU time (in sec-
onds) required to obtain that particular non-dominated&sblutions over a fixed
termination criterion (i.e., fixed maximum number of genieras). Figure 10
clearly shows the trade-off between the quality and diteis the obtained PF
and the required CPU time. Once again, the increase of tlaédearch step-size
results in a non-linear improvement on the quality and divgrof the PF in the
sake of a significant increase on the CPU time.
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Figure 11: Experimental Series 3 (PFSSP) - Effect of Metarduackian Learning: Adaptiveness
of MOEA/D-ML and comparison against all Individualistic ME\/D variants in test instances T3
and T4.

5.6.4. Experimental Series 3 (PFSSP) - Effect of Meta-Lakian Learning

One of the major contributions of this research study is temahstration
of the adaptiveness of the proposed MOEA/D-ML in learningeffectiveness of
each LS from a pool of generalized LS methods, online, aretsef the best per-
forming LS for each objective function of each problem ins&of each class of
problems, during the evolution. Therefore, in this expemtal series, we discuss
the effect of the proposed Meta-Lamarckian learning apgr@agreedy strategy)
on the MOEA/D when applied to the PFSSP.
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Table 14: Results of Experimental Series 3 (PFSSP) - Cosgratietween the MOEA/D-ML
and the six Individualistic MOEA/D variants in terms of therformance metricgp and Iy.
The best overall results of each test instance are denoteadldnand the best results among the
individualistic approaches are underlined.

Alg: M-ML M-Sw M-SwA M-DSw M-Sh M-DSh M-IH
i 15 T 173 Te 173 Te 173 T 15 Te 173 I, 1) T
T 62.14 | 0.09 71.34 | 0.09 9551 | 0.07 8346 | 0.07 6501 | 0.09 61.93 | 0.10 88.80 | 0.07
7 11503 | 0.06 171.28 | 0.09 21014 | 005 || 17045 | 007 || 14006 | 0.0 10311 | 007 || 21928 | 0.08

3 21318 | 0.08 34821 | 0.06 44513 | 004 || 27150 | 0.05 || 260.37 | 0.07 25363 | 0.07 || 387.87 | 006

EE 26400 | 0.06 54905 | 0.07 691.76 | 0.03 || 338.00 | 0.07 || 292.09 | 0.10 30625 | 008 || 73131 | 0.06

=

5

7

Figure 11 shows a visual comparison between the proposed VIDHEIL
with all individualistic MOEA/D variants in the most repea#tative test instances
T3 and T4. Statistical comparison between all approachedl itest instances
follows. The results show that the best performing Indiaiiktic approach is
the MOEA/D-DSh, which obtained better quality and diversitan all the Indi-
vidualistic approaches, overall. The makespan objedtioeever, shows a slight
preference on the MOEA/D-Sw approach since it provides ¢s¢ dibjective value
in both test instances, where it provides a very poor perdmca on the other ob-
jective. The MOEA/D-Sh, on the other hand, provides comipiareesults to (but
slightly worse than) the other two approaches in both oljedtinctions and all
test instances. The MOEA/D-ML approach adaptively leanesperformance of
each Individualistic LS for each objective function andesét the best for each
case. Consequently, the proposed approach clearly oatpertall Individualistic
MOEA/D variants in terms of both diversity and quality of thietained PF.

The above observations are also supported by the statistgalts summa-
rized in Tables 14-16. The results show a comparison betileemproposed
MOEA/D-ML and all Individualistic MOEA/D variants in all gt test instances
with respect to performance metrits, Iy andN DS as well as a comparison be-
tween the MOEA/D-ML and the two best performing Individsélk approaches
with respect to thé’-metric. MOEA/D-ML performs better in six out of eight test
instance with respect to thig, metric, where the best performance in terms the
Iy and N DS metrics varies between different MOEA/D variants. In teohthe
C-metric MOEA/D-ML dominate$9% of the PF obtained by MOEA/D-Sh and
56% of the PF obtained by MOEA/D-DSh, on average in all test imsts, where
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Table 15: Results of Experimental Series 3 (PFSSP) - Cosgratietween the MOEA/D-ML
and the six Individualistic MOEA/D variants in terms of NDBhe best overall results of each
test instance are denoted in bold and the best results arhenigdividualistic approaches are
underlined.

TI M-ML || M-Sw | M-SwA | M-DSw | M-Sh | M-DSh | M-IH
1 29 29 16 21 32 30 24
2 30 26 11 27 23 33 17
3: 29 25 13 29 28 30 20
4: 24 9 12 21 18 27 7
5: 16 8 13 10 12 11 9
6: 27 22 13 22 25 29 21
7 14 12 7 10 8 11 7
8: 24 22 15 26 25 27 17
mean:| 24.13 || 19.13 | 12.50 20.75 | 21.38| 24.75 | 15.25
std: 6.08 8.22 2.73 7.25 8.14 8.70 6.69

only 1% of the MOEA/D-ML’s PF is dominated by MOEA/D-Sh and ord{; of
its PF is dominated by MOEA/D-DSh, on average.

Finally, Table 17 shows a comparison between the propose&MD with
Meta-Lamarckian learnings{greedy strategy), the conventional MOEA/D [13]
and the MOEA/D with Random Walk (MOEA/D-RW) that uniformlgmndomly
selects a local search heuristic from the pool of local $ehsuristics, in terms
of the performance metrics introduced in Subsection 5.3litest instances of
Table 12. The results demonstrate the effect of the Metadtekman learning
in improving the performance of the conventional MOEA/D andadaptively

Table 16: Results of Experimental Series 3 (PFSSP) - Cosyrakietween the MOEA/D-ML and
the best performing Individualistic MOEA/D variants inties of the C-metric. The best results of
each test instance are denoted in bold.

Test Inst. C(MOEA/D-ML,MOEA/D-Sh) C(MOEA/D-Sh,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-DSh) C(MOEA/D-DSh,MOEA/D-ML)
1 0.55 0.00 0.31 0.10
2: 0.93 0.00 0.93 0.00
3: 0.97 0.00 1.00 0.00
4: 0.79 0.00 0.83 0.00
5: 0.50 0.00 0.25 0.09
6: 0.37 0.00 0.44 0.07
7: 0.29 0.00 0.29 0.27
8: 0.33 0.04 0.46 0.07

mean: | 0.59 | 0.01 T 0.56 | 0.08
std: | 0.27 | 0.01 || 0.31 | 0.09
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Table 17: Results of Experimental Series 3 (PFSSP) - TheogeipMOEA/D-ML is compared
with the conventional MOEA/D and the MOEA/D-RW approachesarms of the performance
metricsIp, Iy and NDS (top) and coverage metriC (bottom). The best results of each test
instance are denoted in bold.

Alg: MOEA/D-ML MOEA/D MOEA/D-RW MOEA/D-ML | MOEA/D | MOEA/D-RW
TI D TH D TH I TH NDS NDS NDS
T 62.28 | 007 | 79.66 | 0.07 | 63.04 | 0.08 29 9 29
2 115,03 | 0.10 | 26611 | 003 | 104.09 | 0.10 30 16 34
3 21318 | 0.16 | 432.96 | 0.04 | 206.09 | 0.3 29 7 30
Z 26521 | 012 | 756.72 | 0.04 | 39210 | 0.1 24 3 22
5 4997 | 003 | 7840 | 001 | 5749 | 0.03 6 8 4
6 69.76 | 0.0 | 11165 | 0.06 | 67.83 | 0.08 27 7 27
7 57.74 | 003 | 71.90 | 003 | 66.28 | 0.03 14 3 10
8 7117 | 008 | 7882 | 008 | 72.25 | 0.08 24 7 24
mean: | 113.04 | 0.09 | 23453 | 005 | 12865 | 0.08 || 2413 | 15 | _ 23.76
sid: | 8144 | 004 | 247.04 | 002 | 117.20 | 0.04 || 608 | 351 | 8.19

TestInst. | C(MOEA/D-ML,MOEA/D) C(MOEA/D,MOEA/D-ML) C(MOEA/D-ML,MOEA/D-RW) C(MOEA/D-RW,MOEA/D-ML)
1 0.83 0.00 0.14 0.17
2: 1.00 0.00 0.60 0.24
3 1.00 0.00 0.59 0.13
4 1.00 0.00 0.67 0.09
5 0.63 0.00 0.19 0.14
6 0.85 0.00 0.48 0.04
7 1.00 0.00 0.14 0.10
8 0.88 0.00 0.42 0.04

mean: | 0.90 | 0.00 T 0.40 | 0.12
std: | 0.13 [ 0.00 I 0.22 [ 0.07

selecting the best performing local search heuristicgratian randomly selecting
any local search heuristic from a pool of generalized loeafshes.

In particular, the MOEA/D-ML approach clearly outperforrtiee conven-
tional MOEA/D approach in all test instances with respecalioperformance
metrics. Here it is important to notice that no non-domidagelution obtained
by MOEA/D dominates any solution obtained by MOEA/D-ML, inyatest in-
stance. MOEA/D-ML provides better performance than MOEAW in five test
instances with respect th, metric and in seven out of total eight test instances,
with respect td y, N DS andC-metric.

6. Conclusions and Future Work

In this paper, we deal with a realistic Multi-objective Opization Mobile So-
cial Network Search (MO-MSNS) problem: given a query by argpieone user in
a MSN optimize the search operation by minimizing the totargy consumption
and maximizing the recall rate.

Our proposed algorithm, namely MOEA/D-ML, follows the gesleframe-

49

Page 50 of 56



work of MOEA/D, combined with a Meta-Lamarckian approachttlearns from

the problem’s properties and objective functions. A sgrateromoting both co-
operation and competition was devised for adaptively sielgthe best perform-
ing local search heuristic for each objective function afreproblem instance of
each class of problems, from a pool of general-purpose k&aich heuristics,
so as to locally optimize the solutions during the evolutidio the best of our
knowledge, this is the first such hybridization of a deconitpwsal MOEA and a

Meta-Lamarckian learning strategy, in the literature.

We evaluate our algorithm on mobility and social behavicaitgrns derived
from the real data of GeoLife and DBLP datasets and a tragerdexperimen-
tal methodology. Extensive experimental studies invastighe adaptiveness and
performance of the proposed approach. The experimentatsasitially reveal
that individualistic local search heuristics exhibit biaslifferent test instances of
the MO-MSNS problem as well as in different areas of the dbjespace of the
same test instance. It is then shown that the proposed MOBAM/Buccessfully
learns from this behaviour during the evolution and adapgifollows the pattern
of best performing local search heuristics at differenaaref the objective space.
As a result of this learning strategy, MOEA/D-ML selects biest non-dominated
solutions and at the end provides a more diverse and higlityjsat of Pareto-
optimal solutions compared to its competitors. It is alsmolent from the experi-
mental results that the greedy collaboration between tleedr Neighbourhood-
based and Stochastic Roulette-wheel Meta-Lamarckiaroappes is more effec-
tive than using them separately. The generalizability efgloposed MOEA/D-
ML approach is finally evaluated on the well-known multi-ettjve Permutation
Flow Shop Scheduling Problem (PFSSP) on various benchrestrinstances and
the results reinforce the aforementioned findings.

In the future, we aim at investigating our propositions ia tontext of many-
objective optimization as well as applying our MOEA/D-ML@apach in other
real-life problems. Further research future directiony o include the hy-
bridization of the proposed approach with problem-spetiftal search heuris-
tics as well as heuristics suitable for searching contisualjective spaces for
investigating the application of the MOEA/D-ML on contint®®MOPs.
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